New Glycosidic Constituents of Abutilon pakistanicum

by Bakhat Ali, Itrat Fatima, Abdul Malik*, and Zaheer Ahmed

International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan (phone: +92-21-4824926; e-mail: abdul.malik@iccs.edu)

Pakisides A and B (**1** and **2**, resp.), new catalpol-type iridoid glycosides, and a new glycoside, **3**, of scutellarein have been isolated from the AcOEt-soluble fraction of the whole plant of *Abutilon pakistanicum*, along with buddlejoside and lapachol. The structures of new compounds were elucidated by spectroscopic techniques including ¹H-and ¹³C-NMR (DEPT), and 2D-NMR experiments.

Introduction. – The genus *Abutilon* (Malvaceae) is represented by 150 species which are distributed mainly in subtropical regions of Asia and other parts of the world. Generally, the leaves, roots, and stems of *Abutilon* species contain considerable amounts of mucilage due to which these are used for the treatment of rheumatism, and as demulcents and diuretics [1-3]. One of the species of this genus is *Abutilon pakistanicum* which commonly grows in southern parts of Pakistan. Our previous investigations on this species have resulted in the isolation and structure elucidation of steroids [4], flavonoid glycosides [5][6], and a triterpene [7]. The ethnopharmacological and chemotaxonomic importance of the genus *Abutilon* prompted us to reinvestigate the chemical constituents of *Abutilon pakistanicum*. Here, we report the isolation and structure elucidation of two new catalpol-type iridoid glycosides named as pakisides A and B (1 and 2, resp.) along with a new glycoside, 3, of scutellarein from the AcOEt-soluble fraction. Buddlejoside [8] and lapachol [9] have also been isolated for the first time from this species (*Fig. 1*).

Fig. 1. Structures of pakisides A and B (1 and 2, resp.), and compound 3

Results and Discussion. – The MeOH extract of the whole plant was divided into fractions soluble in hexane, $CHCl_3$, AcOEt, BuOH, and H_2O . Column chromatography of the AcOEt-soluble fraction provided compounds **1**–**5** as described in *Exper. Part.*

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Pakiside A (1) was obtained as colorless gummy solid. The molecular formula was determined as $C_{24}H_{30}O_{13}$ by HR-FAB-MS (positive-ion mode; $[M+H]^+$ peak at m/z527.1764 (calc. 527.1753)). The IR spectrum showed absorption bands of OH (3400 cm⁻¹), ester C=O (1695 cm⁻¹), C=C-O (1635 cm⁻¹), and an aromatic ring (1508 cm⁻¹). The UV spectrum was characteristic of catalpol-type iridoids with a maximum at 278 nm [10]. In the EI-MS, the peaks at m/z 364 and 345 resulted from the loss of a hexose moiety and dimethoxybenzoate group, respectively. The presence of dimethoxybenzoyl moiety was also confirmed by a base peak at m/z 165. The molecular formula of 1 was confirmed by broad-band and DEPT ¹³C-NMR spectra which showed 24 signals of two Me, two CH₂, fifteen CH groups, and five quaternary C-atoms (Table 1). The spectrum showed diagnostic signals for an iridoid moiety, a hexose unit, and a dimethoxybenzoate group. The signals of the iridoid moiety were observed at $\delta(C)$ 141.0 and 101.9 due to one olefinic bond. It further displayed signals of four CH–O C-atoms at $\delta(C)$ 94.2, 80.0, 65.0, and 62.1, in addition to the resonance of an CH₂O C-atom at $\delta(C)$ 62.5. The signals of the remaining CH C-atoms were at $\delta(C)$ 41.9 and 38.0. The signals of a hexose unit were at $\delta(C)$ 98.6, 76.5, 76.0, 73.0, 69.6, and 61.2. The C-atoms of the dimethoxybenzoate residue resonated at $\delta(C)$ 166.4, 153.3, 148.5, 124.0, 112.0, 110.2, 55.9, and 55.0, respectively.

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of **1** and **2**. At 500 and 125 MHz, respectively, in C_5D_5N ; δ in ppm, *J* in Hz.

	1		2	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
H-C(1)	4.87 (d, J = 9.0)	94.2	5.09(d, J = 9.5)	93.0
H-C(3)	6.16 (dd, J = 1.5, 6.0)	141.0	$6.41 \ (dd, J = 1.5, 6.0)$	141.0
H-C(4)	4.83 (d, J = 4.0, 6.0)	101.9	4.95 (dd, J = 4.5, 6.0)	101.7
H-C(5)	2.51 - 2.53(m)	38.0	2.58 - 2.59(m)	38.0
H-C(6)	4.96 (d, J = 7.0)	80.0	5.06 (d, J = 7.5)	80.0
H-C(7)	3.65 (br. s)	62.1	3.68 (br. s)	62.0
C(8)	_	65.0	-	65.0
H-C(9)	2.52 - 2.55(m)	41.9	2.56-2.57(m)	41.8
$CH_{2}(10)$	3.88 (d, J = 13.0), 5.02 (d, J = 13.0)	62.5	3.73 (d, J = 13.0), 5.01 (d, J = 13.0)	62.6
H-C(1')	4.64 (d, J = 8.0)	98.6	4.59 (d, J = 8.0)	97.8
H-C(2')	3.17 - 3.19(m)	73.0	3.21 - 3.02(m)	76.4
H-C(3')	3.21 - 3.23(m)	76.0	3.03 - 3.05(m)	70.2
H-C(4')	3.28 - 3.30(m)	69.6	3.13-3.15 <i>(m)</i>	73.4
H-C(5')	3.13 - 3.15(m)	76.5	3.16-3.18 <i>(m)</i>	77.4
CH ₂ (6')	3.55 (dd, J = 5.0, 12.0)	61.2	3.88 (dd, J = 5.1, 13.0)	61.3
C(1'')	_	121.7	-	121.3
H - C(2'')	7.38 (d, J = 2.0)	112.0	7.45 $(d, J = 2.0)$	111.7
H - C(3'')	_	148.5	-	148.4
C(4'')	-	153.3	-	153.2
H-C(5")	6.75 (d, J = 8.5)	110.2	7.08 (d, J = 8.5)	111.1
H - C(6'')	7.61 (dd, J = 2.0, 8.5)	124.0	7.62 (dd, J = 2.0, 8.5)	123.4
C=O	-	166.4	-	166.4
MeO-C(2'')	3.77 (s)	55.9	3.81 (s)	55.5
MeO-C(3'')	3.76 (s)	55.0	3.83 (s)	55.7
MeO-C(2')	-	-	3.30 (s)	58.1

The ¹H-NMR spectrum (*Table 1*) exhibited the signals of vicinal olefinic H-atoms of the iridoid moiety at $\delta(H)$ 6.16 (*dd*, J = 1.5, 6.0, 1 H) and 4.83 (*dd*, J = 4.0, 6.0, 1 H). The CH–O H-atoms resonated at $\delta(H)$ 4.96 (*d*, J = 7.0, 1 H), 4.87 (br. *d*, J = 9.0, 1 H), 3.65 (br. *s*, 1 H), and the CH₂O H-atoms at $\delta(H)$ 5.02 (*d*, J = 13.0 Hz, 1 H) and 3.88 (*d*, J = 13.0, 1 H). The vicinal CH H-atom resonances appeared as *multiplets* at $\delta(H)$ 2.59 and 2.51–2.53. The anomeric H-atom of the hexose unit resonated at $\delta(H)$ 4.64 (*d*, J = 8.0 Hz, 1 H). The larger coupling constant confirmed β -glycosidic linkage. The aromatic signals were due to a 3,4-dimethoxybenzoate moiety.

Hydrolysis in basic medium yielded 3,4-dimethoxybenzoic acid and an iridoid glucoside, which could be identified as catalposide by comparison of physical and spectral data with those reported in [11][12]. The downfield shift of the resonances of C(10) and its attached H-atoms allowed us to assign the ester moiety to C(10) which was subsequently confirmed by HMBC experiments showing ³J correlation of both the CH₂O H-atoms at C(10) with C=O C-atom signal of the ester at δ (C) 166.4. The hydrolysis in acidic medium provided the free sugar, which could be identified as D-glucose through sign of its optical rotation and comparison of retention times (t_R) of its Me₃Si (TMS) ethers with t_R value of a standard sample in gas chromatography. The attachment of glucose was confirmed by ³J correlation of the anomeric H-atom signal at δ (H) 4.64 with that of C(1) at δ (C) 94.2. The HMQC, HMBC (*Fig. 2*), and NOESY (*Fig. 2*) correlations were in agreement with the assigned structure of pakiside A (**1**) as 10-O-(3'',4''-dimethoxybenzoyl)catalposide (*Fig. 1*).

Fig. 2. Key HMBC $(H \rightarrow C)$ and NOESY $(H \leftrightarrow H)$ correlations of 1

Pakiside B (2) was obtained as colorless gummy solid with the molecular formula $C_{25}H_{32}O_{13}$ deduced from HR-FAB-MS (positive-ion mode; m/z 541.1916 ($[M + H]^+$)). The UV and IR spectra were similar to those of **1**. The ¹H- and ¹³C-NMR spectra were also similar to those of **1** except the presence of additional signals due to a MeO group (δ (H) 3.30 and δ (C) 58.1). The presence of an additional MeO group in the sugar moiety was evident by a common $[M - \text{sugar}]^+$ peak in EI-MS at m/z 364. It could be assigned to C(2') due to a downfield shift of C(2') signal compared to **1** and also on the basis of HMBC showing ³J correlation of MeO H-atom resonance at δ (H) 3.01 with that of C(2') (δ (C) 76.4). Irradiation of MeO H-atoms caused NOE on neighboring H-atoms at C(1') and C(3'), providing conclusive evidence of the presence of 2'-O-methylglucose moiety. The rest of the HMBC and NOESY correlations were similar to those of **1**, allowing us to retain the same configuration. The structure of pakiside B (**2**) could thus be assigned as 10-O-(3'',4''-dimethoxybenzoyl)-2'-O-methylcatalposide.

Compound **3** was obtained as a yellow gummy solid. It gave a violet coloration with FeCl₃, and a positive reaction with *Molish* and *Shinoda* reagents [13]. The molecular formula was determined to be $C_{29}H_{24}O_{12}$ by HR-FAB-MS (positive-ion mode) showing the $[M+H]^+$ peak at m/z 565.1354. The UV spectrum showed maxima at 282 and 334 nm. On addition of AlCl₃ and AlCl₃/HCl, bathochromic shifts of 39 and 28 nm of band 1 were observed, being characteristic of scutellarein [14]. The IR spectrum showed bands of OH (3400 cm^{-1}), ester C=O (1700 cm^{-1}), conjugated C=O (1660 cm⁻¹), and olefinic (1620 cm⁻¹) functionalities. The ¹H- and ¹³C-NMR signals (Table 2) displayed characteristics of a scutellarein moiety with an esterified sugar residue. The anomeric H-atom signal was observed as a *doublet* at $\delta(H)$ 6.29 (J = 7.2 Hz, 1 H) along with other CH and CH₂ signals (Table 2). The presence of an (E)-p-coumaroyl moiety was also evident (olefinic H-atom signals at $\delta(H)$ 7.75 (d, J = 16.0, 1 H) and 6.41 (d, J = 16.0, 1 H); and 7.44 (d, J = 8.7, 2 H) and 7.12 (d, J = 8.7, 2 H). The ¹H- and ¹³C-NMR signals of the sugar moiety characterized it as α -Larabinofuranoside [15]. This was confirmed by acid hydrolysis, which provided besides scutellarein and (E)-p-coumaric acid, a glycone which was identified as L-arabinofuranose by gas chromatography. The ester moiety was deduced to be at C(5'') from the downfield shift of the $CH_2(5'')$ resonance and confirmed by ³J correlations of $CH_2(5'')$ $(\delta(H) 4.77)$ with C=O C-atom of the ester moiety $(\delta(C) 167.2)$. Thus compound **3** was determined as scutellare in $4'-O-\alpha$ -L-[5"-O-(E)-p-coumaroyl]arabinofuranoside.

Table 2. ¹H- and ¹³C-NMR Data of 3. At 500 and 125 MHz, respectively, in C₅D₅N; δ in ppm, J in Hz.

	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$		$\delta(C)$
C(2)	-	162.6	H-C(1")	6.19(d, J = 7.2)	103.9
H-C(3)	6.68(s)	99.8	H-C(2'')	3.82 - 3.91 (m)	75.9
C(4)	-	178.6	H-C(3")	3.81 - 3.83 (m)	71.2
C(5)	-	153.2	H-C(4'')	4.33 - 4.35(m)	78.3
C(6)	-	130.0	CH ₂ (5")	4.77 (dd, J = 5.4, 11.7)	64.1
C(7)	-	157.0	C(1''')	_	126.1
H-C(8)	6.67(s)	94.5	H-C(2"")	7.44 (d, J = 8.7)	130.6
C(9)	-	157.7	H-C(3''')	7.12 (d, J = 8.7)	116.7
C(10)	-	103.0	C(4''')	_	161.3
C(1')	-	121.8	H-C(5''')	7.12 (d, J = 8.7)	116.7
H-C(2')	8.37 (d, J = 9.0)	131.8	H-C(6''')	7.44 (d, J = 8.7)	130.6
H-C(3')	7.22 (d, J = 9.0)	116.0	H-C(7''')	7.75 $(d, J = 16.0)$	145.1
C(4′)	-	157.2	H-C(8''')	6.41 (d, J = 16.0)	114.8
H-C(5')	7.22 (d, J = 9.0)	116.0	C(9''')	_	167.2
H-C(6')	8.37 $(d, J = 9.0)$	131.8	HO-C(5)	13.16 (s)	-

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 250–400 mesh; *E. Merck*, D-Darmstadt). TLC: SiO₂ 60 F_{254} plates (*E. Merck*, D-Darmstadt). Optical rotations: *Jasco DIP-360* digital polarimeter. UV Spectra: *Hitachi UV-3200* spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: *Jasco 302-A* spectrophotometer; in KBr; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: *Bruker* 500 MHz instrument; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. EI-, and HR-FAB-MS: *Jeol JMS-HX-110* and *JMS-DA-500* mass spectrometers with glycerol as matrix; in m/z (rel. %). *Plant Material.* The whole plant of *Abutilon pakistanicum* JAFRI and ALI (8 kg) was collected from Karachi in June 2004 and identified by Prof. *Surraiya Khatoon*, Department of Botany, University of Karachi. A voucher specimen was deposited with the Herbarium (KUH # 697) of the University of Karachi.

Extraction and Isolation. The whole plant of *A. pakistanicum* was shade-dried, ground, and extracted with MeOH (3×201) at r.t. The combined MeOH extract (350 g) was divided into hexane-, CHCl₃-, AcOEt-, BuOH-, and H₂O-soluble fractions. The AcOEt-soluble fraction (35 g) was subjected to CC eluting with mixtures of hexane/AcOEt in increasing polarity. Elution with hexane/AcOEt 7:3 provided a major fraction (3 g), which was again chromatographed and eluted with mixtures of hexane/AcOEt to obtain subfractions: *A* (hexane/AcOEt 6:4), *B* (hexane/AcOEt 4:6), *C* (hexane/AcOEt 2.5:7.5), and *D* (hexane/AcOEt 1:9). *Fr. A* provided a semi-pure compound, which, on subsequent prep. TLC (CHCl₃/MeOH 6:4), yielded lapachol (10 mg). *Fr. B* was subjected to prep. TLC (CHCl₃/MeOH 7:3) to yield compound **3** (8 mg) as yellow gummy solid. *Fr. C* was further chromatographed and eluted with hexane/AcOEt 2:8 to obtain buddlejoside (8 mg) and pakiside A (1) (20 mg) from the top and tail fractions, resp. Increasing the polarity with hexane/AcOEt 1:9 provided another semi-pure compound, which, on subsequent prep. TLC (CHCl₃/MeOH 8:2), yielded pakiside B (2) (15 mg).

Pakiside A (=10-O-(3",4"-Dimethoxybenzoyl)catalposide = [(1a\$,1b\$,2\$,5a\$,6\$,6a\$)-2-(β-D-Glucopyranosyloxy)-1b,5a,6,6a-tetrahydro-6-hydroxyoxireno[4,5]cyclopenta[1,2-c]pyran-1a(2H)-yl]methyl 3,4-Dimethoxybenzoate; **1**). Colorless gummy solid. [a]₂₅²⁵ = -115.0 (c = 0.02, MeOH). UV (MeOH): 278 (4.3). IR (KBr): 3400, 1675, 1635, 1040. ¹H- and ¹³C-NMR: see Table 1. EI-MS: 364 (10), 345 (25), 181 (65), 165 (100). HR-FAB-MS (pos.): 527.1764 ([M + H]⁺, C₂₄H₃₁O⁺₁₃; calc. 527.1765).

Pakiside B (=10-O-(3",4"-Dimethoxybenzoyl)-2'-O-methylcatalposide = [(1a\$,1b\$,2s\$,5a\$,6\$,6a})-1b,5a,6,6a-Tetrahydro-6-hydroxy-2-[(2-O-methyl-β-D-glucopyranosyl)oxy]oxireno[4,5]cyclopenta[1,2-c]pyran-1a(2H)-yl]methyl 3,4-Dimethoxybenzoate; **2**). Colorless gummy solid. [a]_D⁵⁵ = -100.0 (c = 0.03, MeOH). UV (MeOH): 278 (4.5). IR (KBr): 3400, 1675, 1635, 1040. ¹H- and ¹³C-NMR: see *Table 1*. EI-MS: 364 (10.3), 194 (11), 184 (25), 181 (65), 165 (100). HR-FAB-MS (pos.): 541.1916 ([M + H]⁺, C₂₅H₃₃O[†]₃; calc. 541.1921).

Scutellarein-4'-O-α-L-[5''-O-(E)-p-*Coumaroyl*]*arabinofuranoside* (= 5,6,7-*Trihydroxy-2-[4-(*[5-O-[(2E)-3-(4-hydroxyphenyl)-1-oxo-2-propen-1-yl]-α-L-arabinofuranosyl]oxy)phenyl]-4H-1-benzopyran-4-one; **3**). Yellow gummy solid. [a]_D²⁵ = -87.7 (c = 0.04, MeOH). UV (MeOH): 282 (4.0), 334 (3.8). IR (KBr): 3400, 1700, 1660, 1620. ¹H- and ¹³C-NMR: see *Table 2*. EI-MS: 372 (12), 286 (21), 194 (15), 164 (100), 148 (20). HR-FAB-MS (pos.): 565.1354 ([M +H]⁺, C₂₉H₂₅O₁₂⁺; calc. 565.1345).

Alkaline Hydrolysis of **1**. A mixture of **1** (5 mg) and 0.5% NaOH (2 ml) was heated at 60° for 45 min. The mixture was neutralized with 0.2% HCl and chromatographed on polyamide with CHCl₃/MeOH. Elution with CHCl₃/MeOH 97:3 provided a pure compound which crystallized from EtOH (m.p. 178–180°) and could be identified as 3,4-dimethoxybenzoic acid by comparison of physical and spectral data with those reported in [16]. Elution with CHCl₃/MeOH 85:15 furnished the iridoid glucoside which melted at 160°, resolidified, and melted again at 209–211° (dec.), $[\alpha]_D^{20} = -173$ (c = 0.02, EtOH). It was identified as catalposide by comparison of physical and spectral data with those reported in [17].

Acid Hydrolysis of **1**. A soln. of **1** (4 mg) in MeOH (5 ml) containing 1N HCl (2 ml) was refluxed for 4 h, concentrated under reduced pressure, diluted with H₂O, and extracted with AcOEt. The aq. phase was concentrated to obtain the sugar moiety which was identified as D-glucose by the sign of its optical rotation ($[\alpha]_{D}^{23} = +51.8 \ (c = 0.02, MeOH)$). It was further confirmed by comparing retention times of its Me₃Si (TMS) ethers (α -anomer, 3.7 min; β -anomer, 5.1 min) with t_R of a standard sample in gas chromatography (GC). Preparation of TMS ether and its subsequent GC was carried out according to the protocol described in [18]. The aglycone was a mixture of products which could not be worked up due to paucity of material.

Acid Hydrolysis of **3**. A soln. of **3** (1 mg) was refluxed in 10% HCl for 40 min. The resulting aq. mixture was extracted with AcOEt. The residue from the org. phase was subjected to prep. TLC (hexane/AcOEt 3:1) to obtain (*E*)-*p*-coumaric acid (crystalline solid; m.p. $210-213^{\circ}$) and scutellarein (yellow leaflets; m.p. $347-349^{\circ}$).

The aq. phase was neutralized with Ag_2CO_3 , filtered, and the solvent was removed under N_2 . The residue was dissolved in pyridine (0.2 ml), and 0.1M L-cystein methyl ester hydrochloride in pyridine

(0.1 ml) was added. After heating for 2 h, 1-(trimethylsilyl)-1*H*-imidazole (0.1 ml) was added, and the mixture was heated at 60° for 1 h. After drying the mixture, the residue was partitioned with hexane and H₂O (1 ml each). The org. phase was analyzed by GC according to the protocol described in [19] and L-arabinofuranose was identified by comparison of t_R (7.56 min; standard 7.57 min).

REFERENCES

- [1] S. K. Bhattacharjee, 'Hand Book of Medicinal Plants', Pointer Publisher, Jaipur India, 2003, p. 30.
- [2] L. M. Perry, J. Metzger, 'Medicinal Plants of East and South Asia', The MIT Press, Cambridge England, 1980, pp. 341, 347.
- [3] A. Krishna, 'The Wealth of India', CSIR, New Delhi, 1972, Vol. 9, p. 435.
- [4] M. Hussain, D. N. Zahra, S. M. S. Hussain, E. Ahmad, I. Ahmad, A. Malik, Z. Ahmed, Magn. Reson. Chem. 2008, 46, 274.
- [5] M. Hussain, D. N. Zahra, A. Malik, A. Ejaz, H. Siddiqui, M. I. Choudhary, Z. Ahmed, *Heterocycles* 2008, 75, 545.
- [6] B. Ali, M. Imran, R. Hussain, Z. Ahmed, A. Malik, Magn. Reson. Chem. 2010, 48, 159.
- [7] Z. Ahmed, S. N.-u-H. Kazmi, A. Malik, J. Nat. Prod. 1990, 53, 1342.
- [8] I. Ahmad, N. Afza, I. Anis, A. Malik, I. Fatima, Azhar-ul-Haq, R. B. Tareen, *Heterocycles* 2004, 63, 1875.
- [9] R. M. Khan, S. M. Mlungwana, *Phytochemistry* **1999**, *50*, 439.
- [10] İ. Caliş, H. Kirmizibekmez, O. Sticher, J. Nat. Prod. 2001, 64, 60.
- [11] J. M. Bobbitt, D. W. Spiggle, S. Mahboob, H. Schmid, W. V. Philipsborn, J. Org. Chem. 1966, 31, 500.
- [12] J. M. Bobbitt, H. Schmid, T. B. Africa, J. Org. Chem. 1961, 26, 3090.
- [13] J. Schinoda, J. Pharm. Soc. Jpn. 1928, 48, 214.
- [14] B. Voirin, *Phytochemistry* **1983**, 22, 2107.
- [15] Y. Lu, L. Y. Foo, Food Chem. 1997, 59, 187.
- [16] A. G. Pinkus, J. A. Kautz, P. Ahobila-Vajjula, J. Chem. Crystallogr. 2002, 32, 149.
- [17] W. H. Lunn, D. W. Edward, J. T. Edward, Can. J. Chem. 1962, 40, 104.
- [18] S. Hara, H. Okabe, K. Mihashi, Chem. Pharm. Bull. 1987, 35, 501.
- [19] Y. W. Chin, J. Kim, Chem. Pharm. Bull. 2006, 54, 234.

Received February 23, 2010